|
D.4.24.3 normalToricRingFromBinomials
Procedure from library normaliz.lib (see normaliz_lib).
- Usage:
- normalToricRingFromBinomials(ideal I);
normalToricRingFromBinomials(ideal I, intvec grading);
- Return:
The function returns the input ideal I if an option blocking
the computation of Hilbert bases has been activated.
However, in this case some numerical invariants are computed, and
some other data may be contained in files that you can read into
Singular (see showNuminvs, exportNuminvs).
Example:
| LIB "normaliz.lib";
ring R = 37,(u,v,w,x,y,z),dp;
ideal I = u2v-xyz, ux2-wyz, uvw-y2z;
def S = normalToricRingFromBinomials(I);
setring S;
I;
==> I[1]=x(3)
==> I[2]=x(1)
==> I[3]=x(2)*x(3)^3
==> I[4]=x(1)*x(2)*x(3)^2
==> I[5]=x(1)^2*x(2)*x(3)
==> I[6]=x(1)^3*x(2)
==> I[7]=x(1)*x(2)^2*x(3)^4
==> I[8]=x(1)^2*x(2)^2*x(3)^3
==> I[9]=x(1)^2*x(2)^3*x(3)^5
| See also:
ehrhartRing;
intclMonIdeal;
intclToricRing;
normalToricRing.
|